
Quiz 2 - Math 210

American University of Beyrouth - Spring 2018 - Dr. Richard Aoun

Note: In all the exam, R is endowed with the Standard metric and every subset A
of R with the restriction of that metric to A×A.

Exercise 1. Let f be the function defined on R\{3} by f(x) = 1
x−3 . Show, using the ε−δ definition,

that f is continuous on R \ {3}.

Exercise 2. Let (X, d) be a metric space. Show that any closed ball in (X, d) is closed in (X, d).

Exercise 3. Let K := { 1n ;n ∈ N∗}∪{0}. Show that K is a compact subset of R using two different
methods; one of them being the initial definition (i.e. using open covers).

Exercise 4. (Boundary of a set)
Let A ⊆ R. We say that a point x ∈ R is a boundary point of A if

∀ε > 0, (x− ε, x+ ε) ∩A 6= ∅ and (x− ε, x+ ε) ∩ (R \A) 6= ∅.

We denote by ∂A the subset of R consisting of boundary points of A.

Recall that A denotes the closure of A in R, A′ denotes the set of limit points of A in R and
◦
A the

set of its interior points.

1. For each subset A of the following list, determine the sets A′, A and ∂A.

(a) A = (a, b) with a, b ∈ R such that a < b. No justification needed.

(b) A = (0, 1) ∪ {2, 3}. Brief justification only for ∂A.

(c) A = Q ∩ [0, 1]. Brief justification only for ∂A.

2. Let A ⊆ R. Show that ∂A = A \
◦
A = {x ∈ R;x ∈ A and x 6∈

◦
A}.

3. Let A ⊆ R. Show that A is closed in R, if and only if, it contains all of its boundary points
(i.e. ∂A ⊆ A).

4. Let A ⊆ R. Let f be the characteristic function of A i,.e.

f : R −→ R

x 7−→ f(x) :=

{
1 if x ∈ A
0 if x 6∈ A

Show that f is continuous at a point x0 ∈ R, if and only if, x0 6∈ ∂A.
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Exercise 5. (Power Series)
Consider a sequence (an)n∈N of real numbers.

1. Show that, if the series
∑∞
n=0 anb

n converges for some real number b, then the series
∑∞
n=0 anx

n

converges absolutely for every real number x such that |x| < |b|.

2. Let

S :=

{
|x|;

∞∑
n=0

anx
n converges

}
and R := supS.

Note that 0 ∈ S, so S is not empty and R ≥ 0 (eventually +∞).

Let x ∈ R. Show that the series
∑∞
n=0 anx

n converges absolutely if |x| < R and diverges if
|x| > R.

Consequences and Terminology:

• We conclude that the set I := {x ∈ R;
∑∞
n=0 anx

n converges} is an interval centered at 0 whose
endpoints are ±R.

• We conclude also easily that R is the unique number in [0,+∞] that satisfies the conclusion of
Question 2.

• The formal expression
∑∞
n=0 anx

n is called a Power Series, the number R is called the radius
convergence of the power series and I is called its interval of convergence. Moreover, this power
series defines a function from I to R.

3. (Hadamard formula) Show that

R =
1

lim sup
n→+∞

n
√
|an|

.

Convention: 1
0 = +∞ and 1

+∞ = 0.

4. Deduce that the radius of convergence of the power series
∑∞
n=1 nanx

n−1 is also R.

5. Show that the function f(x) :=
∑+∞
n=0 anx

n is continuous on the interior of I, i.e. on (−R,R).

Hint: Recall that for every x, y ∈ R, and for every n ≥ 1, |yn − xn| ≤ ncn−1|y − x|, where
c := max{|x|, |y|}.
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Exercise 1.

1. Consider the function f(x) = 1
x−3 defined on R \ {3} (the latter being endowed with the

restricted metric). Let x0 6= 3 and ε > 0. Take

δ := min

{
|x0 − 3|

2
, ε
|x0 − 3|2

2

}
.

Consider an arbitrary real number x such that x 6= 3 and |x− x0| < δ. First, note that by the
(reversed) triangular inequality,

|x−3| = |(x−x0)−(x0−3)| = |(x0−3)−(x−x0)| ≥ ||x0 − 3| − |x− x0|| ≥ |x−0−3|−|x−x0|.

Since |x− x0| < δ and δ < |x0−3|
2 , we deduce that

|x− 3| > |x0 − 3| − |x0 − 3|
2

=
|x0 − 3|

2
.

Hence,

|f(x)− f(x0)| =
∣∣∣∣ 1

x− 3
− 1

x0 − 3

∣∣∣∣ =
|x− x0|

|x− 3| |x0 − 3|
<

2δ

|x0 − 3|2
.

Since δ < ε |x0−3|2
2 , we deduce that

|f(x)− f(x0)| < ε.

Hence f is continuous at x0. This being true for an arbitrary x0 6= 3, we deduce that f is
continuous on R \ {3}.

Exercise 2. Let (X, d) be a metric space, x0 ∈ X and ε > 0. The closed ball in (X, d) of center
x0 and radius ε is the following subset of X:

A := B′(x0, ε) = {x ∈ X; d(x, x0) ≤ ε}.

We will prove that X \A is open in (X, d). Let x ∈ X \A, i.e. d(x, x0) > ε. Put

δ := d(x, x0)− ε.

Note that δ > 0 as x 6∈ A. We claim that B(x, δ) ∩ A = ∅ or equivalently B(x, δ) ⊆ X \ A. Indeed,
consider an arbitrary element y ∈ B(x, δ). Then by the triangular inequality (or the reversed one),

d(y, x0) > d(x, x0)− d(x, y).

As y ∈ B(x, δ), d(x, y) < δ so that

d(y, x0) > d(x, x0)− δ = ε.

Consequently, y 6∈ A. Since y was arbitrary in B(x, δ), we conclude that

B(x, δ) ⊆ X \A.

Hence x is an interior point of (X \A). Since x was arbitrary in X \A, we deduce that X \A is an
open subset of (X, d), or equivalently, A is closed in (X, d).
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Exercise 3. Let K = { 1n ;n ∈ N} ∪ {0}. Let us prove that K is a compact subset of R. We propose
fours methods, only the forth being the one using the initial definition of compactness using open covers.
The first three are basically equivalent (at least in their proof).

1. Method 1: By Heine Borel’s theorem, its sufficient and necessary to prove that K is bounded
and closed in R. Indeed, K is clearly bounded for the Standard metric as |x| ≤ 1 for every
x ∈ K. Moreover, if (xn)n∈N is sequence of elements in K that converges to some l ∈ R, then
either

• l = 0 and this happens if (xn)n∈N is a subsequence of the sequence ( 1
n )n∈N or if xn = 0

eventually

• or l = 1
n0

for some n0 ∈ N∗, and this happens if xn = 1
n0

eventually

. In any case l ∈ K; so that any sequence of elements of K can converge only in K. Hence K
is closed in R. Compactness of K follows from Heine-Borel’s theorem.

Remark: another method for showing that K is closed in R is to write

R \K = (−∞, 0) ∪
⋃
n∈N∗

(
1

n
,

1

n
) ∪ (1,+∞)

and then conclude that R \K is open in R (as being union of open intervals) and hence that
K is closed in R.

2. Method 2 (Alternative of Method 1):K is a compact subset of R if and only ifK is sequentially
compact. Let then (xn)n∈N be a sequence of elements in K. As in Method 1, one shows that it
admits a subsequence that converges either 0 or to 1

n0
for some n0 ∈ N∗, and hence it admits

a subsequence that converges in K. Hence K is compact.

3. Method 3 (Another alternative of Method 1, proposed indirectly by some students)
By Sheet 5, Ex. 8, we know (I am not assuming that you know, but this is just a method)
that if A is a closed subset of R which is included in some compact subset B of R, then A is
also compact. Here K is a closed subset of R (proof done in Method 1) and K ⊂ [0, 1] which
is compact (as being closed and bounded). Hence K is compact.

4. Method 4: Using initial definition with open covers
Consider an arbitrary cover Y := {Ui; i ∈ I} of K by open subsets of R. Since 0 ∈ K, then
there exists some i0 ∈ I such that 0 ∈ Ui0 . Since Ui0 is open in R, there exists some ε > 0
such that (−ε,+ε) ⊆ Ui0 . Let N = d 1ε e. For every n ≥ N , −ε < 0 < 1

n < ε; so that

∀n ≥ N, 1

n
∈ Ui0 .

Now for each k ∈ {1, · · · , N − 1}, 1
k ∈ K so that there exists some index ik ∈ I such that

1
k ∈ Uik . Consequently,

K ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ UiN−1
∪ Ui0 .

Hence we extracted from the cover Y of K the subcover Y ′ := {, Ui0 , Ui1 , Ui2 , · · · , UiN } which
contains finitely many elements. Hence, K is compact.
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Exercise 4. Note that for every x ∈ R,

x ∈ ∂A ⇐⇒ x is adherent to A and to R \A.

In other terms,
∂A = A ∩ R \A.

1. (a) Let A = (a, b). Then A = [a, b],
◦
A = A = (a, b), A′ = [a, , b], ∂A = {a, b}.

(b) Let A = [0, 1) ∪ {2, 3}. Then A = [0, 1] ∪ {2, 3},
◦
A = (0, 1), A′ = [0, 1], ∂A = {0, 1, 2, 3}.

Justification for the boundary:

i. First, we check that {0, 1, 2, 3} ⊆ ∂A. As these points belong to A, the first condition
required for being a boundary point is clearly fulfilled (i..e that fact that every open
neighborhood about the point intersects A). It is left to prove that for each of
them, every open neighborhood around it intersect R \ A. Let ε > 0. We have
(−ε, ε) ∩ (R \ A) ⊃ [− ε

2 , 0) 6= ∅, (1 − ε, 1 + ε) ⊃ (min{1 + ε
2 , 1.9}, 2) 6= ∅, (2 − ε, 2 +

ε) ∩ (R \A) ⊃
(
max{2− ε

2 , 1.1}, 2
)
6= ∅ and (3− ε, 3 + ε) ∩ (R \A) ⊃ (3, 3 + ε

2 ) 6= ∅.
ii. Now we check that ∂A ⊆ {0, 1, 2, 3}, or equivalentally that if R\{0, 1, 2, 3}∩∂A = ∅.

Indeed, the set {0, 1, 2, 3} is closed in R (as being a finite set), so that its complement
in R is open. Hence every element x of R \ {0, 1, 2, 3} is an interior point of that set,
i.e. there exists some ε0 such that (x− ε0, x+ ε) ∩ (R \A) = ∅. Hence x 6∈ ∂A.

(c) Let A = Q ∩ [0, 1]. Then A = [0, 1]. A′ = [0, 1],
◦
A = ∅ and ∂A = [0, 1].

Justification for the boundary:

i. First, we check that [0, 1] ⊆ ∂A. The deep reason behind this fact is that Q is a
subset of R which is dense but with empty interior, or equivalently it is dense and its
complement in R is also dense.
Let x ∈ [0, 1] and ε > 0. If x ∈ Q, then definitely (x − ε, x + ε) ∩ Q ⊃ {x} 6= ∅.
Moreover, by density of R \Q in R, (x− ε, x+ ε)∩ (R \Q) 6= ∅. Hence x ∈ ∂A in this
case. Now if x ∈ Q, then using this time the density of Q in R, we get that x ∈ ∂A.
In any case x ∈ ∂A.

ii. Now we prove that (R\ [0, 1])∩∂A = ∅. Indeed, R\ [0, 1] is open in R (why?), so every
point x of (R \ A) it is an interior point and hence cannot be a boundary point (as
there is some neighborhood of x that does not intersect A). This proves our claim.

2. We already observed that for every x ∈ R,

x ∈ ∂A⇐⇒ x ∈ A and x ∈ R \A.

However,

x ∈ R \A⇐⇒ ∀ε > 0, (x− ε, x+ ε) ∩ (R \A) 6= ∅ ⇐⇒ ∀ε > 0, (x− ε, x+ ε) 6⊂ A⇐⇒ x 6∈
◦
A.

Hence

x ∈ ∂A⇐⇒ x ∈ A and x 6∈
◦
A.

In other terms, ∂A = A \
◦
A.

3. Assume that A to be closed in R and take an arbitrary boundary point x of A in R. This is
in particular an adherent point to A. Since A is closed in R, we deduce that x ∈ A.

Conversely, assume that A contains all of its boundary points and take an arbitrary adherent

point x of A. We will prove that x ∈ A. If x ∈
◦
A, then we’re done as

◦
A ⊆ A. If not, then

x ∈ A \
◦
A. By Question 2, this implies that x ∈ ∂A. Since we assumed ∂A ⊆ A, we deduce

that x ∈ A. In both cases, x ∈ A. Hence A contains all of its boundary points (i.e. A ⊆ A),
or equivalently, A is closed in R. This proved the desired result.
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4. Let x0 ∈ R. First, we explain what becomes the ε−δ definition of continuity for our particular
function f . The simplification will be due to the fact that Im(f) = {0, 1}. Actually, the
following characterization of continuity is true for any function (defined on any metric space)
taking values 0 or 1.

f is continuous at x0 ⇐⇒ ∀ε > 0,∃δ > 0;∀x ∈ B(x0, δ), |f(x)− f(x0)| < ε (1)

⇐⇒ ∀0 < ε < 1,∃δ > 0;∀x ∈ B(x0, δ), |f(x)− f(x0)| < ε (2)

⇐⇒ ∃δ > 0;∀x ∈ B(x0, δ), |f(x)− f(x0)| = 0 (3)

⇐⇒ ∃δ > 0;∀x ∈ B(x0, δ), f(x) = f(x0) (4)

⇐⇒ f is constant on some open neighborhood of x0

The equivalence of statements (1) and (2) is a general trivial (but useful) fact (convince your-
self why). Also (3) =⇒ (2) is trivial. The key point is implication (2) =⇒ (3). Suppose that
(2) holds. Note that Im(f) = {0, 1} so that for any a, b ∈ R, |f(a)− f(b)| ≤ 1. Applying now
(2) for ε = 0.5 (for instance), we deduce immediately (3).

We are now ready to end the proof.

• Suppose that x0 ∈ ∂A. Then every neighborhood around x0 contains an element of A
and an element of R \ A; so every open neighborhood around x0 contains an element x
such that f(x) 6= f(x0). By (4), f is discontinuous at x0.

• Suppose now that f is discontinuous at x0. By (4), every neighborhood around x0 should
contain an element x such that f(x) 6= f(x0). Hence every neighborhood around x0 will
contain an element of A and R \ A (if x0 ∈ A choose x0 for the element in A and x
for the element in R \ A and the opposite if x0 6∈ A). Hence, we proved that if f was
discontinuous at x0 then x0 ∈ ∂A.

This ends the proof.
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Exercise 4.
Consider a sequence (an)n∈N of real numbers.

1. Let b ∈ R such that
∑+∞
n=0 anb

n converges. If b = 0, then the required result is trivial. Suppose
then that b 6= 0 and consider a real number x such that |x| < |b|. Since b 6= 0, we can write
for every integer n,

|anxn| = |anbn| ×
(∣∣∣x
b

∣∣∣)n .
SInce the series

∑∞
n=0 anb

n converges, then its nth term anb
n tends to 0. In particular,

∃n0 ∈ N;∀n ≥ n0, |anbn| < 1.

Hence

∀n ≥ n0, |anxn| <
(∣∣∣x
b

∣∣∣)n .
Observe now that since |x| < |b|, the series

∑+∞
n=0 (|x|/|b|)n is a geometric series with ratio < 1

in absolute value, hence it converges. By the Direct Comparison Test (for positive sequence), we
deduce that the series

∑+∞
n=0 |anxn| converges, i.e. the series

∑+∞
n=0 anx

n converges absolutely
(and in particular it converges).

2. Consider a real number x such that |x| > R. Then by definition of S, the series
∑+∞
n=0 anx

n

diverges. Suppose now that |x| < R. Since R = supS, then there exists some b ∈ S such
that |x| < b ≤ R. By definition of S, we have that the series

∑∞
n=0 anb

n converges. But since

|x| < b, Question 1 tells us that the series
∑+∞
n=0 anx

n converges absolutely and is in particular
convergent. This is what we wanted to prove.

3. Let ρ := 1

lim sup
n→+∞

n
√
|an|

. We want to prove that ρ = R. We will do it by proving that ρ

satisfies the conditions of Question 2, which is enough to conclude (by uniqueness of R for
these properties). Fix x ∈ R and let zn := anx

n for n ∈ N. Suppose first that |x| < ρ. Then

lim sup
n→+∞

n
√
|zn| = |x| × lim sup

n→+∞

n
√
|an| = ρx. (5)

Since |x| < ρ, we deduce from (5) that lim sup
n→+∞

n
√
|zn| < 1. By the Root Test, we deduce that

the series
∑+∞
n=0 zn converges, i.e. that the series

∑∞
n=0 anx

n converges. Suppose now that

|x| > ρ. We have by (5) that lim sup
n→+∞

n
√
|zn| > 1, which implies by the Root test that the series∑+∞

n=0 zn diverges, i,e, that the series
∑+∞
n=0 anx

n diverges. Hence ρ satisfiers the condition of
Question 2 and then ρ = R.

4. Let a′n = nan, n ∈ N∗. We have

lim sup
n→+∞

n
√
|an| = lim sup

n→+∞
(n

1
n |an|

1
n ). (6)

But n
1
n −→
n→+∞

1 (Basic Limits). It is an exercise to show that this fact, together with (6),

imply that
lim sup n

√
|c′n| = lim sup n

√
|an| = R.

By the previous question, we deduce that the radius of convergence of the Power Series∑+∞
n=0 c

′
nx

n is R, i.e. the same as the radius of convergence of the Power Series
∑+∞
n=0 anx

n.

5. First, we recall a property. If
∑
n cn is a series that converges absolutely, then

∑
n cn converges

and ∣∣∣∣∣
∞∑
n=0

cn

∣∣∣∣∣ ≤
∞∑
n=0

|cn|. (7)

Let now x0 ∈ (−R,R). We will prove that f is continuous on x0. Consider another x ∈ (−R,R)
and let cx := max{|x|, |x0|}. First note that, since x and x0 are in the interior of I, the series∑
n anx

n and
∑
n anx

n
0 converge absolutely. This implies that the series

∑∞
n=0 an(xn − xn0 ) is

also absolutely convergent. Indeed, the nth general term ηn := an(xn−xn0 ) of this series satisfies
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|ηn| = |an(xn−xn0 )| ≤ |anxn|+ |anxn0 |, and the series of general term γn := |anxn|+ |anxn0 | are
convergent (sum of two convergent series); we conclude by DCT. Hence we can use inequality
(7) for the series

∑∞
n=0 an(xn − xn0 ). We have then by (7):

|f(x)− f(x0)| =

∣∣∣∣∣
+∞∑
n=0

anx
n −

+∞∑
n=0

anx
n
0

∣∣∣∣∣
=

∣∣∣∣∣
+∞∑
n=1

an(xn − xn0 )

∣∣∣∣∣ (8)

≤
+∞∑
n=1

|an||xn − xn0 | (9)

≤
+∞∑
n=1

|an|ncn−1x |x− x0| (10)

= |x− x0|
+∞∑
n=1

n|an|cn−1x (11)

The series
∑+∞
n=1 n|an|cn−1x in the last inequality is a series of positive terms ,so it converges in

[0,+∞]. Hence the passage from line (9) to line (10) has a meaning but has to be understood
a priori in [0,+∞]. However, since |cx| = max{|x|, |y|} < R, this sum is finite by Question 1.

Let δ := R−|x0|
2 > 0 and assume from now on that |x−x0| < δ. This implies that |x| < R+|x0|

2 .

Since |x0| < R+|x0|
2 , we deduce that cx <

R+|x0|
2 < R. Hence

|f(x)− f(x0)| ≤ |x− x0|
+∞∑
n=1

n|an|
(
R+ |x|

2

)n
≤ |x− x0|

+∞∑
n=1

n|an|
(
R+ |x0|

2

)n
︸ ︷︷ ︸

M

Since R+|x0|
2 < R, we deduce that Question 1 that the series converges, i.e. that M < +∞.

Taking the limits in N , we deduce that

|x− x0| < δ =⇒ |f(x)− f(x0)| < Mδ.

This clearly implies that f is continuous on x0 (for ε > 0, choose δ := ε/Mx). Since x0 ∈
(−R,R) was arbitrary, we deduce that f is continuous on (−R,R).

Important remarks:

1. Note that it was very important M depends ONLY on x0 (and not on x).

2. It was also very important that the point x0 was in the interior of I, i.e. |x0| < R.

3. Remark about the passage in Question 4. If (an)n and (bn)n∈N are two sequences of real
numbers SUCH THAT THE SEQEUNCE (an)n CONVERGES, then

lim sup
n→+∞

anbn = ( lim
n→+∞

an) × lim sup
n→+∞

bn.

In the case of Question 4, one can apply this equality for e an = n
1
n and bn = |an|

1
n (notation

of the Exercise).

In general, it is not true that lim supn→+∞ anbn = lim supn→+∞ an lim supn→+∞ bn. If both
sequences are non negative, then we have the following inequality:

lim sup
n→+∞

anbn ≤ lim sup
n→+∞

an lim sup
n→+∞

bn.

An example where the inequality is strict (for positive sequences) is the following: a0 = 0, a1 =
1, a2 = 0, a3 = 1, · · · and b0 = 1, b1 = 0, b2 = 0, b3 = 1, · · · , we have anbn = 0 for every n ∈ N
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so that lim supn→+∞ anbn = 0 < 1 = (lim supn→+∞ an)× (lim supn→+∞ bn).

Now if the terms are non negative, the inequality above may not be true (why?)
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